Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 37(11): 5017-5040, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491018

RESUMO

The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.


Assuntos
Doença de Alzheimer , Saponinas , Triterpenos , Humanos , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Neuroproteção , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico
2.
Phytochemistry ; 206: 113527, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460140

RESUMO

Reynoutria multiflora roots are a classical herbal medicine with unique nourishing therapeutic effects. Anomalous vascular bundle (AVB) forming "cloudy brocade patterns" is a typical morphological feature of R. multiflora roots and has been empirically linked to its quality classification. However, scientific evidence, especially for AVB-specific specialised metabolites, has not been comprehensively revealed thus far. Herein, desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) analysis was applied to carry out an in situ analysis of specialised metabolites distributed specifically at the AVB and cork of R. multiflora roots. To enlarge the scope of compounds by DESI detection, various solvent systems including acetone, acetonitrile, methanol, and water were used to assist in the discoveries of 40 specialised metabolites with determined localization. A series of bioactive constituents including stilbenes, flavonoids, anthraquinones, alkaloids, and naphthalenes were found specifically around the brocade patterns. Notably, phospholipids were detected from R. multiflora roots by in situ analysis for the first time and were found mainly in the phloem of AVB (PAB). This is the first study to use gradient solvent systems in DESI-MSI analysis to locate the specialised metabolites distribution. The discovery of feature-specific compounds will bridge the empirical identification to precision quality control of R. multiflora roots.


Assuntos
Alcaloides , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Reynoutria , Solventes , Água
3.
Front Aging Neurosci ; 14: 941994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158548

RESUMO

Background: Oxidative stress, cholinergic deficiency, and neuroinflammation are hallmarks of most neurodegenerative disorders (NDs). Lipids play an important role in brain development and proper functioning. Marine-derived lipids have shown good memory-improving potentials, especially those from fish and microalgae. The cultivated macroalga Hizikia fusiforme is healthy food and shows benefits to memory, but the study is rare on the brain healthy value of its oil. Previously, we had reported that the Hizikia fusiforme functional oil (HFFO) contains arachidonic acid, 11,14,17-eicosatrienoic acid, phytol, and other molecules displaying in vitro acetylcholinesterase inhibitory and nitroxide scavenging activity; however, the in vivo effect remains unclear. In this study, we further investigated its potential effects against lipopolysaccharides (LPS)- or aluminum trichloride (AlCl3)-induced memory deficiency in zebrafish and its drug-related properties in silica. Methods: We established memory deficit models in zebrafish by intraperitoneal (i.p.) injection of lipopolysaccharides (LPS) (75 ng) or aluminum trichloride (AlCl3) (21 µg), and assessed their behaviors in the T-maze test. The interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), acetylcholine (ACh), and malondialdehyde (MDA) levels were measured 24 h after the LPS/AlCl3 injection as markers of inflammation, cholinergic activity, and oxidative stress. Furthermore, the interaction of two main components, 11,14,17-eicosatrienoic acid and phytol, was investigated by molecular docking, with the important anti-inflammatory targets nuclear factor kappa B (NF-κB) and cyclooxygenase 2 (COX-2). Specifically, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of HFFO were studied by ADMETlab. Results: The results showed that HFFO reduced cognitive deficits in zebrafish T-maze induced by LPS/AlCl3. While the LPS/AlCl3 treatment increased MDA content, lowered ACh levels in the zebrafish brain, and elevated levels of central and peripheral proinflammatory cytokines, these effects were reversed by 100 mg/kg HFFO except for MDA. Moreover, 11,14,17-eicosatrienoic acid and phytol showed a good affinity with NF-κB, COX-2, and HFFO exhibited acceptable drug-likeness and ADMET profiles in general. Conclusion: Collectively, this study's findings suggest HFFO as a potent neuroprotectant, potentially valuable for the prevention of memory impairment caused by cholinergic deficiency and neuroinflammation.

4.
Front Nutr ; 9: 966276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983489

RESUMO

Ellagic acid (EA) is a dietary polyphenol that widely exists in grapes, strawberries, and walnuts. It usually exerts multiple biological activities together with its in vivo metabolites called urolithins. EA and urolithins had been proposed as natural agents for applying on the early intervention of Alzheimer's disease (AD). However, the neuroprotective effects of those small molecules have not been confirmed, and the action mechanism is not clear. Deposition of beta-amyloid (Aß) protein is well documented as being involved in the initiation and pathological process of AD. In the present study, we investigated the attenuating effects of EA and several urolithins on Aß25-35-induced neuronal injury and its underlying molecular mechanism by constructing the in vitro AD cell model of PC12 cells and primary neurons. The results revealed that EA and urolithins especially the UM5 and UM6 exerted promising neuroprotective effects in improving the Aß25-35-induced cell damage and lactate dehydrogenase (LDH) leakage, reducing reactive oxygen species (ROS) production, inhibiting neuronal apoptosis, and promoting neurite outgrowth. These results provide new insights into the development of UM5 and UM6 as anti-AD candidates. A network pharmacology analysis combining molecular docking strategy was further adopted to predict the signaling pathway involved in the anti-AD action of EA and urolithins, and the activation of PI3K-Akt, as well as the inhibition of MAPK was found to be involved.

5.
Phytother Res ; 36(9): 3490-3504, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35844057

RESUMO

Eleutherococcus senticosus is a medicinal plant widely used in traditional medicine and edible remedies with effects on anti-fatigue, sleep improvement, and memory enhancement. Recently, the application of E. senticosus to neurological disorders has been a focus. However, its overall pharmacological effect on neural diseases and relevant mechanisms are needed in an in-depth summary. In this review, the traditional uses and the therapeutic effect of E. senticosus on the treatment of fatigue, depression, Alzheimer's disease, Parkinson's disease, and cerebral ischemia were summarized. In addition, the underlying mechanisms involved in the anti-oxidative damage, anti-inflammation, neurotransmitter modulation, improvement of neuronal growth, and anti-apoptosis were discussed. This review will accelerate the understanding of the neuroprotective effects brought from the E. senticosus, and impetus its development as a phytotherapy agent against neurological disorders.


Assuntos
Eleutherococcus , Doenças do Sistema Nervoso , Plantas Medicinais , Anti-Inflamatórios/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
6.
Food Funct ; 13(6): 3603-3620, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35262106

RESUMO

Dried Eleutherococcus senticosus leaves (ESL), also known as Siberian ginseng tea, are beneficial for human neural disorders. Our previous studies showed that the aqueous extract of ESL enhanced memory in mice, and its saponin fraction (ESL-SAP) exhibited promising neuroprotective activities in vitro; however, the in vivo neurally related effect, bioactive material basis, and possible mechanism of action of ESL-SAP have not been investigated. Here, a series of memory and learning tests were carried out, and the results evidenced a significant enhancement effect of ESL-SAP. Furthermore, an in vivo saponin library-guided pseudotargeted strategy was established to support the rapid monitoring of 26 blood-brain barrier (BBB)-permeated saponins from ESL-SAP-administered rats. A further network pharmacology analysis was conducted on BBB-permeated compounds, which indicated that the in vivo mechanism of ESL-SAP might be effective through multiple targets and pathways, such as the AGE-RAGE signaling pathway and PI3K-Akt signaling pathway, to exert neuroprotective effects. Moreover, the molecular docking experiments demonstrated that key BBB-transferred saponins primarily interacted with targets HRAS, MAPK1, and MAPK8 to produce the neuroprotective effect.


Assuntos
Eleutherococcus , Saponinas , Animais , Barreira Hematoencefálica , Camundongos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química , Ratos , Saponinas/análise , Saponinas/farmacologia
7.
Biochem Pharmacol ; 194: 114798, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678227

RESUMO

Drug affinity responsive target stability (DARTS) is a novel target discovery approach and is particularly adept at screening small molecule (SM) targets without requiring any structural modifications. The DARTS method is capable of revealing drug-target interactions from cells or tissues by tracking changes in the stability of proteins acting as receptors of bioactive SMs. Due to its simple operation and high efficiency, the DARTS method has been applied to uncover the drug-action mechanism. This review summarized analytical principles, protocols, validation approaches, applications, and challenges involved in the DARTS method. Due to the innate advantages of the DARTS method, it is expected to be a powerful tool to accelerate SM target discovery, especially for bioactive natural products with unknown mechanisms.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos/tendências , Descoberta de Drogas/tendências , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Estabilidade de Medicamentos , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Ligação Proteica/fisiologia , Bibliotecas de Moléculas Pequenas/metabolismo
8.
Brain Behav Immun ; 96: 143-153, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052364

RESUMO

Depression is associated with abnormal lipid metabolism, and omega (n)-3 polyunsaturated fatty acids (PUFAs) can effectively treat depression. However, mechanism of lipid metabolism involved in the depressive attenuation remains poorly understood. Olfactory bulbectomy (OB)-induced changes in animal behavior and physiological functions are similar to those observed in depressed patients. Therefore, the present study used wild type (WT) and Fat-1 mice with or without OB to explore whether endogenous n-3 PUFA treatment of depression was through rectifying lipid metabolism, and to discover the possible lipid metabolic pathways. In WT mice, OB enhanced locomotor activity associated with up-regulation of lipid metabolites in the serum, such as phosphatidylcholines, L-a-glutamyl-L-Lysine and coproporphyrinogen III (Cop), which were involved in anti-inflammatory lipid metabolic pathways. OB also increased microglia activation marker CD11b and pro-inflammatory cytokines in the hippocampus. In one of the lipid pathways, increased Cop was significantly correlated with the hyper-activity of the OB mice. These OB-induced changes were markedly attenuated by endogenous n-3 PUFAs in Fat-1 mice. Additionally, increased expressions of anti-inflammatory lipid genes, such as fatty acid desaturase (Fads) and phospholipase A2 group VI (Pla2g6), were found in the hippocampus of Fat-1 mice compared with WT mice. Furthermore, Cop administration increased the production of pro-inflammatory cytokines and nitric oxide in a microglial cell line BV2. In conclusion, endogenous n-3 PUFAs in Fat-1 mice attenuated abnormal behavior in the depression model through restoration of lipid metabolism and suppression of inflammatory response.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Citocinas , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados , Fosfolipases A2 do Grupo VI , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia
9.
Neuroimmunomodulation ; 26(1): 33-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699428

RESUMO

OBJECTIVE: Both excitotoxicity and neurotrophin deficiency may contribute to the etiology of depression and neurodegeneration. Astrocytes not only regulate glutamate metabolism and clearance, they also produce neurotrophins in the brain. However, the direct interaction between neurons and astrocytes remains unknown. METHODS: This study evaluated the cellular mechanisms by which astrocyte-conditioned medium (ACM) protects prefrontal cortical neurons from glutamate-induced death by measuring cell viability and morphology as well as mRNA and protein expression of brain-derived neurotrophic factor (BDNF), BDNF receptors, glial cell line-derived neurotrophic factor (GDNF), and the proinflammatory cytokine, tumor necrosis factor (TNF)-α. Neurons and astrocytes were purified from the brains of neonatal 1-day-old Sprague-Dawley rats. ACM was harvested after exposing astrocytes to culture medium containing 100 µM glutamate for 48 h. RESULTS: Glutamate insult (100 µM for 6 h) significantly reduced neuronal cell viability and increased the mRNA expression of BDNF. Glutamate (24 h) decreased neuronal viability and the expression of BDNF, but increased mRNA expression of GFAP, p75 neurotrophin receptor (p75NTR), and TNF-α. ACM pretreatment (2 h) reversed glutamate-decreased cell viability and increased BDNF, but reduced the expression of GDNF, P75NTR, and TNF-α at the mRNA level. Western blotting generally confirmed the mRNA expression following 24 glutamate insults. Furthermore, the glutamate-induced decrease in the protein expression of BDNF and full-length TrkB receptor and increase in pro-BDNF, truncated TrkB isoform 1 receptor, p75NTR, GDNF, and TNF-α were significantly attenuated by ACM pretreatment. CONCLUSIONS: The study demonstrates that ACM exerts neuroprotective effects on cell viability, and this effect is most likely mediated through the modulation of neurotrophin and TNF-α expression.


Assuntos
Astrócitos/metabolismo , Morte Celular/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Neurônios/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Fator Neurotrófico Derivado de Linhagem de Célula Glial/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/efeitos dos fármacos , Receptor trkB/genética , Receptor trkB/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
J Nat Prod ; 78(9): 2297-300, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26299900

RESUMO

Axonal regeneration might contribute to the restoration of damaged neuronal networks and improvement of memory deficits in a murine Alzheimer's disease (AD) model. A search for axonal regenerative drugs was performed to discover novel therapeutic options for AD. In this study, an aqueous extract of Drynaria fortunei rhizomes reversed Aß25-35-induced axonal atrophy in cultured cortical neurons of mice. Bioassay-guided fractionation of this extract led to the isolation and identification of compounds 1-5. Among them, (2S)-neoeriocitrin (2) and caffeic acid 4-O-glucoside (4) showed significant axonal elongation effects on Aß25-35-induced atrophy.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Fragmentos de Peptídeos/farmacologia , Polypodiaceae/química , Doença de Alzheimer/tratamento farmacológico , Animais , Atrofia/induzido quimicamente , Axônios/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Camundongos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Rizoma/química
11.
Phytochemistry ; 105: 158-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916320

RESUMO

Seven hexahydrobenzophenanthridine-type alkaloids, Ambiguanine A-G, along with eight known alkaloids, were isolated from tubers of Corydalis ambigua var. amurensis. Their structures were elucidated based on extensive spectroscopic analyses, with absolute configurations determined by CD experiments.


Assuntos
Alcaloides/isolamento & purificação , Benzofenantridinas/isolamento & purificação , Corydalis/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Alcaloides/química , Benzofenantridinas/química , Medicamentos de Ervas Chinesas/química , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Tubérculos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...